ON VIBRATIONS OF A BODY WITH MANY CONCENTRATED MASSES NEAR THE BOUNDARY

Author:

LOBO MIGUEL1,PEREZ EUGENIA1

Affiliation:

1. Departamentos de Matematicas, Universidad de Cantabria, Av. de los Castros s/n. 39071 Santander, Spain

Abstract

We consider the asymptotic behavior of the vibration of a body occupying a region Ω⊂ℝ3. The density, which depends on a small parameter ε, is of order O(1) out of certain regions where it is O(ε–m) with m>2. These regions, the concentrated masses with diameter O(ε), are located near the boundary, at mutual distances O(η), with η=η(ε)→0. We impose Dirichlet (respectively Neumann) conditions at the points of ∂Ω in contact with (respectively, out of) the masses. For the critical size ε=O(η2), the asymptotic behavior of the eigenvalues of order O(εm−2) is described via a Steklov problem, where the ‘mass’ is localized on the boundary, or through the eigenvalues of a local problem obtained from the micro-structure of the problem. We use the techniques of the formal asymptotic analysis in homogenization to determine both problems. We also use techniques of convergence in homogenization, Semigroups theory, Fourier and Laplace transforms and boundary values of analytic functions to prove spectral convergence. In the same framework we study the case m=2 as well as the case when other boundary conditions are imposed on ∂Ω.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Modeling and Simulation

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3