SAINT VENANT COMPATIBILITY EQUATIONS ON A SURFACE APPLICATION TO INTRINSIC SHELL THEORY

Author:

CIARLET PHILIPPE G.1,GRATIE LILIANA2,MARDARE CRISTINEL3,SHEN MING1

Affiliation:

1. Department of Mathematics, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong

2. Liu Bie Ju Centre for Mathematical Sciences, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong

3. Université Pierre et Marie Curie, Paris6, UMR 7598 Laboratoire Jacques-Louis Lions, Paris, F-75005, France

Abstract

We first establish that the linearized change of metric and change of curvature tensors, with components in L2and H-1respectively, associated with a displacement field, with components in H1, of a surface S immersed in ℝ3must satisfy in the distributional sense compatibility conditions that may be viewed as the linear version of the Gauss and Codazzi-Mainardi equations. These compatibility conditions, which are analogous to the familiar Saint Venant equations in three-dimensional elasticity, constitute the Saint Venant equations on the surface S.We next show that these compatibility conditions are also sufficient, i.e. that they in fact characterize the linearized change of metric and the linearized change of curvature tensors in the following sense: If two symmetric matrix fields of order two defined over a simply-connected surface S ⊂ ℝ3satisfy the above compatibility conditions, then they are the linearized change of metric and linearized change of curvature tensors associated with a displacement field of the surface S, a field whose existence is thus established.The proof provides an explicit algorithm for recovering such a displacement field from the linearized change of metric and linearized change of curvature tensors. This algorithm may be viewed as the linear counterpart of the reconstruction of a surface from its first and second fundamental forms.Finally, we show how these results can be applied to the "intrinsic theory" of linearly elastic shells, where the linearized change of metric and change of curvature tensors are the new unknowns. These new unknowns solve a quadratic minimization problem over a space of tensor fields whose components, which are only in L2, satisfy the Saint Venant compatibility conditions on a surface in the sense of distributions.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Modeling and Simulation

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3