Boundary layer mesh resolution in flow computation with the Space–Time Variational Multiscale method and isogeometric discretization

Author:

Kuraishi Takashi1,Takizawa Kenji2,Tezduyar Tayfun E.13

Affiliation:

1. Mechanical Engineering, Rice University – MS 321, 6100 Main Street, Houston, TX 77005, USA

2. Department of Modern Mechanical Engineering, Waseda University, 3-4-1 Ookubo, Shinjuku-ku, Tokyo 169-8555, Japan

3. Faculty of Science and Engineering, Waseda University, 3-4-1 Ookubo, Shinjuku-ku, Tokyo 169-8555, Japan

Abstract

We present an extensive study on boundary layer mesh resolution in flow computation with the Space–Time Variational Multiscale (ST-VMS) method and isogeometric discretization. The study is in the context of 2D flow past a circular cylinder, at Reynolds number ranging from [Formula: see text] to [Formula: see text]. It was motivated by the need to have in tire aerodynamics a better understanding of the mesh resolution requirements near the tire surface. The focus in the study is on the normal-direction element length for the first layer of elements near the cylinder, with that length varying by a refinement factor ranging from 2 to 40. The evaluation is based mostly on the velocity profile near the cylinder. As the element length for the first layer is varied, the element lengths for the other layers of the disk-shaped inner mesh are adjusted, with no increase in the number of elements for the refinement factors 2, 3, and 4, and with modest increases only in the radial direction for refinement factors beyond that. The computations are performed with quadratic NURBS basis functions in space and linear basis functions in time. The expressions for the stabilization parameters used in the ST-VMS and for the related local lengths scales are those targeting isogeometric discretization, introduced in recent years. The mesh resolution study is based mostly on the strong enforcement of the Dirichlet boundary conditions on the cylinder, but also includes some computations with the weakly-enforced conditions. We expect that the data generated and observations made will be helpful in setting proper near-surface mesh resolution in VMS-based computations with isogeometric discretization, not only for cylindrical shapes but also for comparable geometries. We furthermore expect that although the data generated and observations made are based on computations with nonmoving meshes, they will also be applicable to computations with moving meshes where the mesh around the solid surface rotates with the surface in the framework of the ST Slip Interface method.

Funder

International Technology Center Indo-Pacific

ARO

Publisher

World Scientific Pub Co Pte Ltd

Subject

Applied Mathematics,Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3