Affiliation:
1. ICES, The University of Texas at Austin, 1 University Station C0200, Austin TX 78712-0027, USA
Abstract
We develop divergence-conforming B-spline discretizations for the numerical solution of the steady Navier–Stokes equations. These discretizations are motivated by the recent theory of isogeometric discrete differential forms and may be interpreted as smooth generalizations of Raviart–Thomas elements. They are (at least) patchwise C0 and can be directly utilized in the Galerkin solution of steady Navier–Stokes flow for single-patch configurations. When applied to incompressible flows, these discretizations produce pointwise divergence-free velocity fields and hence exactly satisfy mass conservation. Consequently, discrete variational formulations employing the new discretization scheme are automatically momentum-conservative and energy-stable. In the presence of no-slip boundary conditions and multi-patch geometries, the discontinuous Galerkin framework is invoked to enforce tangential continuity without upsetting the conservation or stability properties of the method across patch boundaries. Furthermore, as no-slip boundary conditions are enforced weakly, the method automatically defaults to a compatible discretization of Euler flow in the limit of vanishing viscosity. The proposed discretizations are extended to general mapped geometries using divergence-preserving transformations. For sufficiently regular single-patch solutions subject to a smallness condition, we prove a priori error estimates which are optimal for the discrete velocity field and suboptimal, by one order, for the discrete pressure field. We present a comprehensive suite of numerical experiments which indicate optimal convergence rates for both the discrete velocity and pressure fields for general configurations, suggesting that our a priori estimates may be conservative. These numerical experiments also suggest our discretization methodology is robust with respect to Reynolds number and more accurate than classical numerical methods for the steady Navier–Stokes equations.
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Modeling and Simulation
Cited by
134 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献