ISOGEOMETRIC DIVERGENCE-CONFORMING B-SPLINES FOR THE STEADY NAVIER–STOKES EQUATIONS

Author:

EVANS JOHN A.1,HUGHES THOMAS J. R.1

Affiliation:

1. ICES, The University of Texas at Austin, 1 University Station C0200, Austin TX 78712-0027, USA

Abstract

We develop divergence-conforming B-spline discretizations for the numerical solution of the steady Navier–Stokes equations. These discretizations are motivated by the recent theory of isogeometric discrete differential forms and may be interpreted as smooth generalizations of Raviart–Thomas elements. They are (at least) patchwise C0 and can be directly utilized in the Galerkin solution of steady Navier–Stokes flow for single-patch configurations. When applied to incompressible flows, these discretizations produce pointwise divergence-free velocity fields and hence exactly satisfy mass conservation. Consequently, discrete variational formulations employing the new discretization scheme are automatically momentum-conservative and energy-stable. In the presence of no-slip boundary conditions and multi-patch geometries, the discontinuous Galerkin framework is invoked to enforce tangential continuity without upsetting the conservation or stability properties of the method across patch boundaries. Furthermore, as no-slip boundary conditions are enforced weakly, the method automatically defaults to a compatible discretization of Euler flow in the limit of vanishing viscosity. The proposed discretizations are extended to general mapped geometries using divergence-preserving transformations. For sufficiently regular single-patch solutions subject to a smallness condition, we prove a priori error estimates which are optimal for the discrete velocity field and suboptimal, by one order, for the discrete pressure field. We present a comprehensive suite of numerical experiments which indicate optimal convergence rates for both the discrete velocity and pressure fields for general configurations, suggesting that our a priori estimates may be conservative. These numerical experiments also suggest our discretization methodology is robust with respect to Reynolds number and more accurate than classical numerical methods for the steady Navier–Stokes equations.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Modeling and Simulation

Cited by 134 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3