Stability for the training of deep neural networks and other classifiers

Author:

Berlyand Leonid1,Jabin Pierre-Emmanuel1,Safsten C. Alex2

Affiliation:

1. Mathematics Department and Huck, Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA

2. Mathematics Department, The Pennsylvania State University, University Park, Pennsylvania 16802, USA

Abstract

We examine the stability of loss-minimizing training processes that are used for deep neural networks (DNN) and other classifiers. While a classifier is optimized during training through a so-called loss function, the performance of classifiers is usually evaluated by some measure of accuracy, such as the overall accuracy which quantifies the proportion of objects that are well classified. This leads to the guiding question of stability: does decreasing loss through training always result in increased accuracy? We formalize the notion of stability, and provide examples of instability. Our main result consists of two novel conditions on the classifier which, if either is satisfied, ensure stability of training, that is we derive tight bounds on accuracy as loss decreases. We also derive a sufficient condition for stability on the training set alone, identifying flat portions of the data manifold as potential sources of instability. The latter condition is explicitly verifiable on the training dataset. Our results do not depend on the algorithm used for training, as long as loss decreases with training.

Funder

National Science Foundation

National Science Foundation Research Networks in Mathematical Sciences

Laboratory for Telecommunication Sciences

Publisher

World Scientific Pub Co Pte Ltd

Subject

Applied Mathematics,Modeling and Simulation

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3