On a nonlocal Cahn–Hilliard model permitting sharp interfaces

Author:

Burkovska Olena1,Gunzburger Max23

Affiliation:

1. Computer Science and Mathematics Division, Oak Ridge National Laboratory, One Bethel Valley Road, Oak Ridge, TN 37831, USA

2. Department of Scientific Computing, Florida State University, 400 Dirac Science Library, Tallahassee, FL 32306-4120, USA

3. Oden Institute for Computer Engineering and Sciences, University of Texas at Austin, Austin, TX 78712, USA

Abstract

A nonlocal Cahn–Hilliard model with a non-smooth potential of double-well obstacle type that promotes sharp interfaces in the solution is presented. To capture long-range interactions between particles, a nonlocal Ginzburg–Landau energy functional is defined which recovers the classical (local) model as the extent of nonlocal interactions vanish. In contrast to the local Cahn–Hilliard problem that always leads to diffuse interfaces, the proposed nonlocal model can lead to a strict separation into pure phases of the substance. Here, the lack of smoothness of the potential is essential to guarantee the aforementioned sharp-interface property. Mathematically, this introduces additional inequality constraints that, in a weak formulation, lead to a coupled system of variational inequalities which at each time instance can be restated as a constrained optimization problem. We prove the well-posedness and regularity of the semi-discrete and continuous in time weak solutions, and derive the conditions under which pure phases are admitted. Moreover, we develop discretizations of the problem based on finite element methods and implicit–explicit time-stepping methods that can be realized efficiently. Finally, we illustrate our theoretical findings through several numerical experiments in one and two spatial dimensions that highlight the differences in features of local and nonlocal solutions and also the sharp interface properties of the nonlocal model.

Funder

U.S. Department of Energy

Oak Ridge National Laboratory

Publisher

World Scientific Pub Co Pte Ltd

Subject

Applied Mathematics,Modelling and Simulation

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3