Affiliation:
1. Laboratory of Physics and Mathematical Engineering for the study of Energy, Environment and Building, University of La Réunion, 117 rue du General Ailleret, 97430 Le Tampon, Reunion, France
Abstract
Topology optimization for fluid flow aims at finding the location of a porous medium minimizing a cost functional under constraints given by the Navier–Stokes equations. The location of the porous media is usually taken into account by adding a penalization term [Formula: see text], where [Formula: see text] is a kinematic viscosity divided by a permeability and [Formula: see text] is the velocity of the fluid. The fluid part is obtained when [Formula: see text] while the porous (solid) part is defined for large enough [Formula: see text] since this formally yields [Formula: see text]. The main drawback of this method is that only solid that does not let the fluid to enter, that is perfect solid, can be considered. In this paper, we propose to use the porosity of the media as optimization parameter hence to minimize some cost function by finding the location of a porous media. The latter is taken into account through a singular perturbation of the Navier–Stokes equations for which we prove that its weak-limit corresponds to an interface fluid-porous medium problem modeled by the Navier–Stokes–Darcy equations. This model is then used as constraint for a topology optimization problem. We give necessary condition for such problem to have at least an optimal solution and derive first order necessary optimality condition. This paper ends with some numerical simulations, for Stokes flow, to show the interest of this approach.
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Modelling and Simulation
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献