Affiliation:
1. Mathematisches Institut, Universität Tübingen, Auf der Morgenstelle 10, D-72076 Tübingen, Germany
Abstract
We study a fluid-dynamical model based on a coupled Navier–Stokes–Nernst–Planck–Poisson system. Of special interest are the fluid velocity, concentrations of charged particles ranging from colloidal to nano size and the induced quasi-electrostatic potential, which all depend on an externally applied electrical field. For d ≤ 3, we prove existence and in some cases uniqueness of weak solutions. Moreover, we characterize solutions via energy laws, mass conservation, non-negativity and pointwise bounds. Furthermore, the system enjoys an entropy law. Existence of locally strong solutions is verified.
Publisher
World Scientific Pub Co Pte Ltd
Subject
Applied Mathematics,Modelling and Simulation
Cited by
101 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献