Affiliation:
1. ANMC, Section de Mathématiques, École Polytechnique Fédérale de Lausanne, Station 8, CH-1015 Lausanne, Switzerland
Abstract
A family of effective equations that capture the long time dispersive effects of wave propagation in heterogeneous media in an arbitrary large periodic spatial domain [Formula: see text] is proposed and analyzed. For a wave equation with highly oscillatory periodic spatial tensors of characteristic length [Formula: see text], we prove that the solution of any member of our family of effective equations is [Formula: see text]-close to the true oscillatory wave over a time interval of length [Formula: see text] in a norm equivalent to the [Formula: see text] norm. We show that the previously derived effective equation in [T. Dohnal, A. Lamacz and B. Schweizer, Bloch-wave homogenization on large time scales and dispersive effective wave equations, Multiscale Model. Simulat. 12 (2014) 488–513] belongs to our family of effective equations. Moreover, while Bloch wave techniques were previously used, we show that asymptotic expansion techniques give an alternative way to derive such effective equations. An algorithm to compute the tensors involved in the dispersive equation and allowing for efficient numerical homogenization methods over long time is proposed.
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Modelling and Simulation
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献