Affiliation:
1. Johannes Kepler University (JKU), Altenbergerstr. 69, Linz, 4040, Austria
Abstract
In this paper, we present the analysis of the discontinuous Galerkin dual-primal isogeometric tearing and interconnecting method (dG-IETI-DP) for a multipatch discretization in two-space dimensions where we only consider vertex primal variables. As model problem, we use the Poisson equation with globally constant diffusion coefficient. The dG-IETI-DP method is a combination of the dual-primal isogeometric tearing and interconnecting method (IETI-DP) with the discontinuous Galerkin (dG) method. We use the dG method only on the interfaces to couple different patches. This enables us to handle non-matching grids on patch interfaces as well as segmentation crimes (gaps and overlaps) between the patches. The purpose of this paper is to derive quasi-optimal bounds for the condition number of the preconditioned system with respect to the maximal ratio [Formula: see text] of subdomain diameter and mesh size. Moreover, we show that the condition number is independent of the number of patches, but depends on the mesh sizes of neighboring patches [Formula: see text] and the parameter [Formula: see text] in the dG penalty term.
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Modeling and Simulation
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献