AGGREGATION AND SPREADING VIA THE NEWTONIAN POTENTIAL: THE DYNAMICS OF PATCH SOLUTIONS

Author:

BERTOZZI ANDREA L.1,LAURENT THOMAS2,LÉGER FLAVIEN1

Affiliation:

1. Department of Mathematics, University of California Los Angeles, Los Angeles, CA 90095, USA

2. Department of Mathematics, University of California Riverside, Riverside, CA 92521, USA

Abstract

This paper considers the multidimensional active scalar problem of motion of a function ρ(x, t) by a velocity field obtained by v = -∇N * ρ, where N is the Newtonian potential. We prove well-posedness of compactly supported L∩ L1solutions of possibly mixed sign. These solutions include an important class of solutions that are proportional to characteristic functions on a time-evolving domain. We call these aggregation patches. Whereas positive solutions collapse on themselves in finite time, negative solutions spread and converge toward a self-similar spreading circular patch solution as t → ∞. We give a convergence rate that we prove is sharp in 2D. In the case of positive collapsing solutions, we investigate numerically the geometry of patch solutions in 2D and in 3D (axisymmetric). We show that the time evolving domain on which the patch is supported typically collapses on a complex skeleton of codimension one.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Applied Mathematics,Modeling and Simulation

Cited by 71 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Analyticity of the flow for the aggregation equation;Journal of Mathematical Analysis and Applications;2025-01

2. Interpreting systems of continuity equations in spaces of probability measures through PDE duality;Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas;2024-06-17

3. Beginner’s guide to aggregation-diffusion equations;SeMA Journal;2024-03-13

4. Trend to Equilibrium for Flows With Random Diffusion;International Mathematics Research Notices;2024-02-13

5. The regularity of the boundary of vortex patches for some nonlinear transport equations;Analysis & PDE;2023-09-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3