Affiliation:
1. Dipartimento di Metodi e Modelli Matematici, Università di Roma "La Sapienza", via A.Scarpa 16, 00161 Roma, Italy
2. Dipartimento di Ingegneria Civile, Università di Roma "Tor Vergata", via del Politecnico 1, 00133 Roma, Italy
Abstract
We study a problem set in a finely mixed periodic medium, modelling electrical conduction in biological tissues. The unknown electric potential solves standard elliptic equations set in different conductive regions (the intracellular and extracellular spaces), separated by a dielectric surface (the cell membranes), which exhibits both a capacitive and a nonlinear conductive behaviour. Accordingly, dynamical conditions prevail on the membranes, so that the dependence of the solution on the time variable t is not only of parametric character. As the spatial period of the medium goes to zero, the electric potential approaches in a suitable sense a homogenization limit u0, which keeps the prescribed boundary data, and solves the equation [Formula: see text]. This is an elliptic equation containing a term depending on the history of the gradient of u0; the matrices B0, A1 in it depend on the microstructure of the medium. More exactly, we have that, in the limit, the current is still divergence-free, but it depends on the history of the potential gradient, so that memory effects explicitly appear. The limiting equation also contains a term ℱ keeping trace of the initial data.
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Modeling and Simulation
Cited by
41 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献