FINITE ELEMENT APPROACH TO IMMERSED BOUNDARY METHOD WITH DIFFERENT FLUID AND SOLID DENSITIES

Author:

BOFFI DANIELE1,CAVALLINI NICOLA1,GASTALDI LUCIA2

Affiliation:

1. Dipartimento di Matematica "F. Casorati", Università di Pavia, Via Ferrata 1, 27100 Pavia, Italy

2. Dipartimento di Matematica, Università di Brescia, via Valotti, 9-25133, Brescia, Italy

Abstract

The Immersed Boundary Method (IBM) has been designed by Peskin for the modeling and the numerical approximation of fluid-structure interaction problems, where flexible structures are immersed in a fluid. In this approach, the Navier–Stokes equations are considered everywhere and the presence of the structure is taken into account by means of a source term which depends on the unknown position of the structure. These equations are coupled with the condition that the structure moves at the same velocity of the underlying fluid. Recently, a finite element version of the IBM has been developed, which offers interesting features for both the analysis of the problem under consideration and the robustness and flexibility of the numerical scheme. Initially, we considered structure and fluid with the same density, as it often happens when dealing with biological tissues. Here we study the case of a structure which can have a density higher than that of the fluid. The higher density of the structure is taken into account as an excess of Lagrangian mass located along the structure, and can be dealt with in a variational way in the finite element approach. The numerical procedure to compute the solution is based on a semi-implicit scheme. In fluid-structure simulations, nonimplicit schemes often produce instabilities when the density of the structure is close to that of the fluid. This is not the case for the IBM approach. In fact, we show that the scheme enjoys the same stability properties as in the case of equal densities.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Modeling and Simulation

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3