A parabolic local problem with exponential decay of the resonance error for numerical homogenization

Author:

Abdulle Assyr1,Arjmand Doghonay1,Paganoni Edoardo1

Affiliation:

1. Institute of Mathematics, École Polytechnique Fédérale de Lausanne, Station 8, Lausanne,CH-1015, Switzerland

Abstract

This paper aims at an accurate and efficient computation of effective quantities, e.g. the homogenized coefficients for approximating the solutions to partial differential equations with oscillatory coefficients. Typical multiscale methods are based on a micro–macro-coupling, where the macromodel describes the coarse scale behavior, and the micromodel is solved only locally to upscale the effective quantities, which are missing in the macromodel. The fact that the microproblems are solved over small domains within the entire macroscopic domain, implies imposing artificial boundary conditions on the boundary of the microscopic domains. A naive treatment of these artificial boundary conditions leads to a first-order error in [Formula: see text], where [Formula: see text] represents the characteristic length of the small scale oscillations and [Formula: see text] is the size of microdomain. This error dominates all other errors originating from the discretization of the macro and the microproblems, and its reduction is a main issue in today’s engineering multiscale computations. The objective of this work is to analyze a parabolic approach, first announced in A. Abdulle, D. Arjmand, E. Paganoni, C. R. Acad. Sci. Paris, Ser. I, 2019, for computing the homogenized coefficients with arbitrarily high convergence rates in [Formula: see text]. The analysis covers the setting of periodic microstructure, and numerical simulations are provided to verify the theoretical findings for more general settings, e.g. non-periodic microstructures.

Funder

Swiss National Science Foundation

Publisher

World Scientific Pub Co Pte Ltd

Subject

Applied Mathematics,Modeling and Simulation

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On the Nature of the Boundary Resonance Error in Numerical Homogenization and Its Reduction;Multiscale Modeling & Simulation;2024-06-06

2. An Elliptic Local Problem with Exponential Decay of the Resonance Error for Numerical Homogenization;Multiscale Modeling & Simulation;2023-05-08

3. Numerical Approaches;Homogenization Theory for Multiscale Problems;2022-12-23

4. Approches numériques;Homogénéisation en milieu périodique... ou non;2022

5. Numerical Upscaling via the Wave Equation with Perfectly Matched Layers;Springer Proceedings in Mathematics & Statistics;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3