POINTWISE BOUNDS AND SPATIAL DECAY ESTIMATES IN HEAT CONDUCTION PROBLEMS

Author:

PAYNE L.E.1,PHILIPPIN G.A.2

Affiliation:

1. Department of Mathematics, Cornell University, Ithaca, NY 14853, USA

2. Département de Mathématiques et de Statistique, Université Laval, Québec, Canada, G1K 7P4, Canada

Abstract

In this paper we derive a new maximum principle for the absolute value of the gradient of a solution to the heat equation. We then apply this principle to obtain explicit bounds in the associated Dirichlet problem. Finally we derive explicit pointwise St-Venant type spatial decay estimates for solutions of certain initial-boundary value problems and their gradients in the case of unbounded domains.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Modelling and Simulation

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Continuous dependence for solutions to 2-D Boussinesq system channel flow;Differential Equations & Applications;2016

2. Phragmén–Lindelöf alternative results for the shallow water equations for transient compressible viscous flow;Journal of Mathematical Analysis and Applications;2013-02

3. Spatial decay bounds for the channel flow of the Boussinesq equations;Journal of Mathematical Analysis and Applications;2011-09

4. Spatial decay in a cross-diffusion problem;IMA Journal of Applied Mathematics;2007-08-16

5. Spatial decay bounds and continuous dependence on the data for a class of parabolic initial-boundary value problems;Journal of Mathematical Analysis and Applications;2006-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3