Affiliation:
1. Department of Shipping and Marine Technology, Chalmers University of Technology, S-41296 Göteborg, Sweden
2. Department of Mathematics, Umea University, S-90187 Umea, Sweden
Abstract
Least-squares finite element methods (LSFEM) are useful for first-order systems, where they avoid the stability consideration of mixed methods and problems with constraints, like the div-curl problem. However, LSFEM typically suffer from requirements on the solution to be very regular. This rules out, e.g., applications posed on nonconvex domains. In this paper we study a least-squares formulation where the discrete space is enriched by discontinuous elements in the vicinity of singularities. The weighting on the interelement terms are chosen to give correct regularity of the solution space and thus making computation of less regular problems possible. We apply this technique to the first-order Poisson problem, show coercivity and a priori estimates, and present numerical results in 3D.
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Modeling and Simulation
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献