Affiliation:
1. Grupo de Modelización y Simulación Numérica, Escuela Politécnica Superior, Universidad Carlos III de Madrid, Av de la Universidad 30, 28911 Leganés, Madrid, Spain
Abstract
A Wigner–Poisson kinetic equation describing charge transport in doped semiconductor superlattices is proposed. Electrons are assumed to occupy the lowest miniband, exchange of lateral momentum is ignored and the electron–electron interaction is treated in the Hartree approximation. There are elastic collisions with impurities and inelastic collisions with phonons, imperfections, etc. The latter are described by a modified BGK (Bhatnagar–Gross–Krook) collision model that allows for energy dissipation while yielding charge continuity. In the hyperbolic limit, nonlocal drift-diffusion equations are derived systematically from the kinetic Wigner–Poisson–BGK system by means of the Chapman–Enskog method. The nonlocality of the original quantum kinetic model equations implies that the derived drift-diffusion equations contain spatial averages over one or more superlattice periods. Numerical solutions of the latter equations show self-sustained oscillations of the current through a voltage biased superlattice, in agreement with known experiments.
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Modelling and Simulation
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献