EXPONENTIAL CONVERGENCE OF hp-FEM FOR MAXWELL EQUATIONS WITH WEIGHTED REGULARIZATION IN POLYGONAL DOMAINS

Author:

COSTABEL MARTIN1,DAUGE MONIQUE1,SCHWAB CHRISTOPH2

Affiliation:

1. Institut Mathématique, UMR 6625 du CNRS, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex, France

2. Seminar für Angewandte Mathematik, ETH Zürich, ETHZ HG G58.1, CH-8092 Zürich, Switzerland

Abstract

The time-harmonic Maxwell equations do not have an elliptic nature by themselves. Their regularization by a divergence term is a standard tool to obtain equivalent elliptic problems. Nodal finite element discretizations of Maxwell's equations obtained from such a regularization converge to wrong solutions in any non-convex polygon. Modification of the regularization term consisting in the introduction of a weight restores the convergence of nodal FEM, providing optimal convergence rates for the h version of finite elements. We prove exponential convergence of hp FEM for the weighted regularization of Maxwell's equations in plane polygonal domains provided the hp-FE spaces satisfy a series of axioms. We verify these axioms for several specific families of hp finite element spaces.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Modeling and Simulation

Cited by 65 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Exponential Convergence of Deep Operator Networks for Elliptic Partial Differential Equations;SIAM Journal on Numerical Analysis;2023-06-14

2. Availability Evaluation of Finite Element Analysis Data for Data Supplementation with Motor Failure Diagnosis Algorithm Training Data;2022 IEEE 5th Student Conference on Electric Machines and Systems (SCEMS);2022-11-24

3. Tensor rank bounds for point singularities in ℝ3;Advances in Computational Mathematics;2022-04-14

4. Error estimate FEM for the Nikol’skij–Lizorkin problem with degeneracy;Journal of Computational and Applied Mathematics;2022-03

5. Singularities and Graded Mesh Algorithms;Graded Finite Element Methods for Elliptic Problems in Nonsmooth Domains;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3