Short-time heat diffusion in compact domains with discontinuous transmission boundary conditions

Author:

Bardos Claude1,Grebenkov Denis2,Rozanova-Pierrat Anna3

Affiliation:

1. Laboratory Jacques Louis Lions, University of Paris 6, Pierre et Marie Curie, 4 Place Jussieu, Paris, France

2. Laboratoire de Physique de la Matière Condensée, CNRS — École Polytechnique, F-91128, Palaiseau, France

3. Laboratoire Mathématiques et Informatique Pour la Complexité et les Systèmes, Centrale Supélec, Université Paris-Saclay, Grande Voie des Vignes, Châtenay-Malabry, France

Abstract

We consider a heat problem with discontinuous diffusion coefficients and discontinuous transmission boundary conditions with a resistance coefficient. For all bounded (ϵ, δ)-domains Ω ⊂ ℝn with a d-set boundary (for instance, a self-similar fractal), we find the first term of the small-time asymptotic expansion of the heat content in the complement of Ω, and also the second-order term in the case of a regular boundary. The asymptotic expansion is different for the cases of finite and infinite resistance of the boundary. The derived formulas relate the heat content to the volume of the interior Minkowski sausage and present a mathematical justification to the de Gennes' approach. The accuracy of the analytical results is illustrated by solving the heat problem on prefractal domains by a finite elements method.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Modelling and Simulation

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dirichlet boundary valued problems for linear and nonlinear wave equations on arbitrary and fractal domains;Journal of Mathematical Analysis and Applications;2022-08

2. Mixed boundary valued problems for linear and nonlinear wave equations in domains with fractal boundaries;Calculus of Variations and Partial Differential Equations;2022-03-04

3. On the existence of optimal shapes in architecture;Applied Mathematical Modelling;2021-06

4. Generalization of Rellich–Kondrachov Theorem and Trace Compactness for Fractal Boundaries;Fractals in Engineering: Theoretical Aspects and Numerical Approximations;2020-12-21

5. Semigroup-theoretic approach to diffusion in thin layers separated by semi-permeable membranes;Journal of Evolution Equations;2020-10-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3