HURST EXPONENT ESTIMATION FOR SHORT-TIME SERIES BASED ON SINGULAR VALUE DECOMPOSITION ENTROPY

Author:

ALVAREZ-RAMIREZ J.1ORCID,RODRIGUEZ E.1ORCID,CASTRO L.1ORCID

Affiliation:

1. División de Ciencias Básicas e Ingeniería, Universidad Autonoma Metropolitana-Iztapalapa, Apartado Postal 55-534, Iztapalapa, CDMX 09340, México

Abstract

Complex time series appear commonly in a large diversity of the science, engineering, economy, financial and social fields. In many instances, complex time series exhibit scaling behavior over a wide range of scales. The traditional rescaled-range (R/S) analysis and the detrended fluctuation analysis (DFA) are commonly used to characterize the scaling behavior via the Hurst exponent. These methods perform well for long-time series. However, the performance may be poor for short times resulting from scarce measurements (e.g. less than a hundred). This work proposes an approach based on singular value decomposition (SVD) entropy for estimating the Hurst exponent for short-time series. In the first step, synthetic time series were used to find the relationship between Hurst exponent and SVD entropy. In the second step, an empirical relationship was proposed to estimate the Hurst exponent from SVD entropy computations of the time series. The performance of the approach was illustrated with two examples of real-time series (consumer price index (CPI) and El Niño Oceanic Index), showing that the estimated Hurst exponent provides valuable insights into the physical mechanisms involved in the generation of the time series.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Applied Mathematics,Geometry and Topology,Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3