HARDWARE ACCELERATION OF DNA READ ALIGNMENT PROGRAMS: CHALLENGES AND OPPORTUNITIES

Author:

DANIEL PACHECO-BAUTISTA1,RICARDO CARREÑO-AGUILERA1,IGNACIO ALGREDO-BADILLO2,MIGUEL PATIÑO-ORTIZ3

Affiliation:

1. Department of Computer Engineering, University of the Isthmus, University Avenue No. 1, Bo. Santa Cruz, Tehuantepec, Oaxaca 70760, México

2. Coordination of Computational Systems, National Institute of Astrophysics, Optics and Electronics, Luis Enrique Erro No. 1 Santa María Tonantzintla, Puebla 72840, México

3. Instituto Politécnico Nacional, SEPI ESIME, Av. Luis Enrique Erro S/N, Unidad Profesional Adolfo López Mateos, Zacatenco, Alcaldía Gustavo A. Madero, C. P. 07738, Ciudad de México, México

Abstract

The alignment or mapping of Deoxyribonucleic Acid (DNA) reads produced by the new massively parallel sequencing machines is a fundamental initial step in the DNA analysis process. DNA alignment consists of ordering millions of short nucleotide sequences called reads, using a previously sequenced genome as a reference, to reconstruct the genetic code of a species. Even with the efforts made in the development of new multi-stage alignment programs, based on sophisticated algorithms and new filtering heuristics, the execution times remain limiting for the development of various applications such as epigenetics and genomic medicine. This paper presents an overview of recent developments in the acceleration of DNA alignment programs, with special emphasis on those based on hardware, in particular Graphics Processing Units (GPUs), Field Programmable Gate Arrays (FPGAs), and Processing-in-Memory (PIM) devices. Unlike most of the works found in the literature, which review only the proposals that gradually emerged in some specific acceleration technology, this work analyzes the contemporary state of the subject in a more comprehensive way, covering from the conception of the problem, the modern sequencing technologies and the analysis of the structure of the new alignment programs, to the most innovative software and hardware acceleration techniques. The foregoing allows to clearly define, at the end of the paper, the trends, challenges and opportunities that still prevail in the field. We hope that this work will serve as a guide for the development of new and more sophisticated DNA alignment systems.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Applied Mathematics,Geometry and Topology,Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3