EXTREME EVENTS ANALYSIS OF NON-STATIONARY TIME SERIES BY USING HORIZONTAL VISIBILITY GRAPH

Author:

ZHAO XIAOJUN1ORCID,SUN JIE1,ZHANG NA1,SHANG PENGJIAN2

Affiliation:

1. School of Economics and Management, Beijing Jiaotong University, Beijing 100044, P. R. China

2. Department of Mathematics, School of Science, Beijing Jiaotong University, Beijing 100044, P. R. China

Abstract

In this paper, we analyze the extreme events of non-stationary time series in the framework of horizontal visibility graph (HVG). We give a new definition of extreme events, which incorporates the temporal structure of the series and the degree of the nodes in the HVG. An advantage of the new concept is that it does not require ad hoc treatment even when the non-stationarity arises in time series. We also use the information-theoretic methods to analyze the degree of nodes in the HVG. In the numerical analysis, we study the statistical characterizations of the extreme events of synthetic time series, including the random noises, periodic time series, random walk processes, and the long-range auto-correlated time series. Then, we study 9 time series in stock markets to identify the extreme events evolving in these non-stationary systems. Interestingly, we find that the daily closing price series perform rather close to the random walk processes, while the daily trading volume series behave quite similar to the random noises.

Funder

National Natural Science Foundation of China

Beijing Social Science Fund

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Geometry and Topology,Modelling and Simulation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3