NUMERICAL STUDY ON KOCH FRACTAL BAFFLE MICROMIXER

Author:

ZHANG SHUAI1,CHEN XUEYE1ORCID,WU ZHONGLI1,ZHENG YUE1

Affiliation:

1. Faculty of Mechanical Engineer and Automation, Liaoning University of Technology, Jinzhou 121001, P. R. China

Abstract

This paper is mainly to study the application of Koch fractal baffle to passive micromixers. It can be determined that the mixing efficiency of secondary Koch fractal baffle (SKFB) micromixer is better than that of primary Koch fractal baffle (PKFB). We compare and analyze the mixing efficiency when the angle between the baffle and the microchannel is [Formula: see text], [Formula: see text] and [Formula: see text] with the height 100[Formula: see text][Formula: see text]m. With the changing of the angle, it contributes to enhance the chaotic convection of the micromixer. Especially at the angle of [Formula: see text], the vortex caused by the Koch fractal baffle structure is more obvious, the mixing efficiency of micromixer is more than 95% at Re [Formula: see text] 0.05 and 100. When the height of Koch fractal baffle is 50, 75 and [Formula: see text]m, the mixing efficiency of the micromixer gradually increases. The whirling and spiral phenomenon of the streamlines increases the chaotic convection and promotes the improvement of the mixing efficiency. In the direction of microchannel, nine sections which have a significant effect on the mixing efficiency are investigated. The encircling and split phenomenon affected by the chaotic convection is shown in nine sections at Re [Formula: see text] 0.05, 10 and 100.

Funder

The Key Project of Department of Education of Liaoning Province

Liaoning Province BanQianWan Talent Project

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Geometry and Topology,Modelling and Simulation

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3