FRACTAL ANALYSIS AND NUMERICAL SIMULATION ON PULSATING FLOW PATTERNS IN A THREE-DIMENSIONAL BRONCHIAL TREE

Author:

QIAN JIANGHONG1,YAN WEIWEI1,JIANG ZHOU2,XU PENG3ORCID

Affiliation:

1. College of Metrology and Measurement Engineering, China Jiliang University, Hangzhou 310018, P. R. China

2. Sir Run Run Shao Hospital, Zhejiang University School of Medicine, Hangzhou 310016, P. R. China

3. College of Science, China Jiliang University, Hangzhou 310018, P. R. China

Abstract

The pulsating airflow through human bronchial tree is of great significance for understanding its function and morphology. Fractal theory and numerical simulation are applied in this paper to study the global and local flow characteristics in the bronchial tree under unstable conditions. First, the pulsating flow impedance of fractal bronchial tree is derived, and the structure of bronchial tree is optimized by minimizing flow impedance. It has been shown that the optimal structure depends on the physical law governing the airflow. The optimized diameter ratio between parent and daughter branches for pulsating flow is different from Murray’s law, and the fractal dimension for branch diameter lies in 2 and 3. Afterwards, the local pulsating flow field by three-dimensional (3D) numerical simulation on a symmetrical bronchial model is compared with the global flow characteristics by fractal analysis. The numerical results show that asymmetrical airflow characteristics can be found at high Reynolds number, and the velocity distribution of the main bronchus is more irregular and the turbulence phenomenon is more evident. This work can help to understand the association between function and structure of the bronchial tree, and it may shed light on the physical mechanisms and drugs targeting of pulmonary disease.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Zhejiang Province

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Geometry and Topology,Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3