ATTACK VULNERABILITY OF FRACTAL SCALE-FREE NETWORK

Author:

GUO FEIYAN1ORCID,QI LIN2ORCID,FAN YING3ORCID

Affiliation:

1. School of National Safety and Emergency Management, Beijing Normal University, 100875, Beijing, P. R. China

2. School of Economics and Management, Beijing Information Science and Technology University, 100192, Beijing, P. R. China

3. School of Systems Science, Beijing Normal University, 100875, Beijing, P. R. China

Abstract

An in-depth analysis of the attack vulnerability of fractal scale-free networks is of great significance for designing robust networks. Previous studies have mainly focused on the impact of fractal property on attack vulnerability of scale-free networks under static node attacks, while we extend the study to the cases of various types of targeted attacks, and explore the relationship between the attack vulnerability of fractal scale-free networks and the fractal dimension. A hierarchical multiplicative growth model is first proposed to generate scale-free networks with the same structural properties except for the fractal dimension. Furthermore, the fractal dimension of the network is calculated using two methods, namely, the box-covering method and the cluster-growing method, to exclude the possibility of differences in conclusions caused by the methods of calculating the fractal dimension for the subsequent relationship analysis. Finally, four attack strategies are used to attack the network, and the network performance is quantitatively measured by three structural indicators. Results on model networks show that compared to non-fractal modular networks, fractal scale-free networks are more robust to both static and dynamic targeted attacks on nodes and links, and the robustness of the network increases as the fractal dimension decreases. However, there is a cost in that as the fractal dimension decreases, the network becomes less efficient and more vulnerable to random failures on links. These findings contribute to a deeper understanding of the impact of fractal property on scale-free network performance and may be useful for designing resilient infrastructures.

Funder

National Natural Science Foundation of China

Publisher

World Scientific Pub Co Pte Ltd

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3