SYNTHETIC MINORITY OVERSAMPLING TECHNIQUE AND FRACTAL DIMENSION FOR IDENTIFYING MULTIPLE SCLEROSIS

Author:

ZHANG YU-DONG12,ZHANG YIN3,PHILLIPS PREETHA4,DONG ZHENGCHAO5,WANG SHUIHUA67

Affiliation:

1. School of Computer Science and Technology, Nanjing Normal University, Nanjing, Jiangsu 210023, P. R. China

2. Hunan Provincial Key Laboratory of Network Investigational Technology, Hunan Policy Academy, Changsha, Hunan 410138, P. R. China

3. School of Information and Safety Engineering, Zhongnan University of Economics and Law, Wuhan, Hubei 430073, P. R. China

4. West Virginia School of Osteopathic Medicine, 400 N Lee St, Lewisburg, WV 24901, USA

5. Translational Imaging Division & MRI Unit, Columbia University and New York State Psychiatric Institute, New York, NY 10032, USA

6. Department of Electrical Engineering, The City College of New York, CUNY, New York, NY 10031, USA

7. Department of Mechanical and Control Engineering, Kyushu Institute of Technology, Fukuoka Prefecture 804-8550, Japan

Abstract

Multiple sclerosis (MS) is a severe brain disease. Early detection can provide timely treatment. Fractal dimension can provide statistical index of pattern changes with scale at a given brain image. In this study, our team used susceptibility weighted imaging technique to obtain 676 MS slices and 880 healthy slices. We used synthetic minority oversampling technique to process the unbalanced dataset. Then, we used Canny edge detector to extract distinguishing edges. The Minkowski–Bouligand dimension was a fractal dimension estimation method and used to extract features from edges. Single hidden layer neural network was used as the classifier. Finally, we proposed a three-segment representation biogeography-based optimization to train the classifier. Our method achieved a sensitivity of 97.78±1.29%, a specificity of 97.82±1.60% and an accuracy of 97.80±1.40%. The proposed method is superior to seven state-of-the-art methods in terms of sensitivity and accuracy.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Geometry and Topology,Modelling and Simulation

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3