CALCULUS ON FRACTAL CURVES IN Rn

Author:

PARVATE ABHAY12,SATIN SEEMA12,GANGAL A. D.1

Affiliation:

1. Department of Physics, University of Pune, Pune 411 007, India

2. Center for Modelling and Simulation, University of Pune, Pune 411 007, India

Abstract

A new calculus on fractal curves, such as the von Koch curve, is formulated. We define a Riemann-like integral along a fractal curve F, called Fα-integral, where α is the dimension of F. A derivative along the fractal curve called Fα-derivative, is also defined. The mass function, a measure-like algorithmic quantity on the curves, plays a central role in the formulation. An appropriate algorithm to calculate the mass function is presented to emphasize its algorithmic aspect. Several aspects of this calculus retain much of the simplicity of ordinary calculus. We establish a conjugacy between this calculus and ordinary calculus on the real line. The Fα-integral and Fα-derivative are shown to be conjugate to the Riemann integral and ordinary derivative respectively. In fact, they can thus be evalutated using the corresponding operators in ordinary calculus and conjugacy. Sobolev Spaces are constructed on F, and Fα-differentiability is generalized. Finally we touch upon an example of absorption along fractal paths, to illustrate the utility of the framework in model making.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Geometry and Topology,Modelling and Simulation

Reference27 articles.

Cited by 63 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Analyzing the stability of fractal delay differential equations;Chaos, Solitons & Fractals;2024-11

2. Power series solution for fractal differential equations;Bollettino dell'Unione Matematica Italiana;2024-08-12

3. Exact solutions of some fractal differential equations;Applied Mathematics and Computation;2024-07

4. Torricelli’s Law in Fractal Space–Time Continuum;Mathematics;2024-06-30

5. Expansion of the universe on fractal time: A study on the dynamics of cosmic growth;International Journal of Modern Physics A;2024-05-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3