QUANTIFYING THE COVID-19 SHOCK IN CRYPTOCURRENCIES

Author:

FERNANDES LEONARDO H. S.1ORCID,SILVA JOSÉ W. L.2ORCID,ARAUJO FERNANDO H. A.3ORCID,BARIVIERA AURELIO F.4ORCID

Affiliation:

1. Department of Economics and Informatics, Federal Rural University of Pernambuco, Serra Talhada, PE 56909-535, Brazil

2. Department of Statistics and Informatics, Federal Rural University of Pernambuco, Recife, PE 52171-900 Brazil

3. Federal Institute of Education Science and Technology of Paraıba, Campus Patos PB. Acesso rodovia PB 110, S/N Alto Tubiba - CEP 58700-030 PB, Patos, Brazil

4. Department of Business, ECO-SOS, Universitat Rovira i Virgili, Reus, Spain

Abstract

This paper sheds light on the changes suffered in cryptocurrencies due to the COVID-19 shock through a nonlinear cross-correlations and similarity perspective. We have collected daily price and volume data for the seven largest cryptocurrencies considering trade volume and market capitalization. For both attributes (price and volume), we calculate their volatility and compute the Multifractal Detrended Cross-Correlations (MF-DCCA) to estimate the complexity parameters that describe the degree of multifractality of the underlying process. We detect (before and during COVID-19) a standard multifractal behavior for these volatility time series pairs and an overall persistent long-term correlation. However, multifractality for price volatility time series pairs displays more persistent behavior than the volume volatility time series pairs. From a financial perspective, it reveals that the volatility time series pairs for the price are marked by an increase in the nonlinear cross-correlations excluding the pair Bitcoin versus Dogecoin [Formula: see text]. At the same time, all volatility time series pairs considering the volume attribute are marked by a decrease in the nonlinear cross-correlations. The K-means technique indicates that these volatility time series for the price attribute were resilient to the shock of COVID-19. While for these volatility time series for the volume attribute, we find that the COVID-19 shock drove changes in cryptocurrency groups.

Publisher

World Scientific Pub Co Pte Ltd

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3