Affiliation:
1. Department of Applied Mathematics, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
Abstract
IFS fractals — the attractors of Iterated Function Systems — have motivated plenty of research to date, partly due to their simplicity and applicability in various fields, such as the modeling of plants in computer graphics, and the design of fractal antennas. The statement and resolution of the Fractal-Line Intersection Problem is imperative for a more efficient treatment of certain applications. This paper intends to take further steps towards this resolution, building on the literature. For the broad class of hyperdense fractals, a verifiable condition guaranteeing intersection with any line passing through the convex hull of a planar IFS fractal is shown, in general ℝd for hyperplanes. The condition also implies a constructive algorithm for finding the points of intersection. Under certain conditions, an infinite number of approximate intersections are guaranteed, if there is at least one. Quantification of the intersection is done via an explicit formula for the invariant measure of IFS.
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Geometry and Topology,Modeling and Simulation
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献