A NEW SPECTRAL–SPATIAL JOINTED HYPERSPECTRAL IMAGE CLASSIFICATION APPROACH BASED ON FRACTAL DIMENSION ANALYSIS

Author:

SU JUNYING1,LI YINGKUI2,HU QINGWU3ORCID

Affiliation:

1. School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, P. R. China

2. Department of Geography, University of Tennessee, Knoxville 37996, USA

3. School of Remote Sensing and Information Engineering, Wuhan University, Wuhan 430079, P. R. China

Abstract

To maximize the advantages of both spectral and spatial information, we introduce a new spectral–spatial jointed hyperspectral image classification approach based on fractal dimension (FD) analysis of spectral response curve (SRC) in spectral domain and extended morphological processing in spatial domain. This approach first calculates the FD image based on the whole SRC of the hyperspectral image and decomposes the SRC into segments to derive the FD images with each SRC segment. These FD images based on the segmented SRC are composited into a multidimensional FD image set in spectral domain. Then, the extended morphological profiles (EMPs) are derived from the image set through morphological open and close operations in spatial domain. Finally, all these EMPs and FD features are combined into one feature vector for a probabilistic support vector machine (SVM) classification. This approach was demonstrated using three hyperspectral images in urban areas of the university campus and downtown area of Pavia, Italy, and the Washington DC Mall area in the USA, respectively. We assessed the potential and performance of this approach by comparing with PCA-based method in hyperspectral image classification. Our results indicate that the classification accuracy of our proposed method is much higher than the accuracies of the classification methods based on the spectral or spatial domain alone, and similar to or slightly higher than the classification accuracy of PCA-based spectral–spatial jointed classification method. The proposed FD approach also provides a new self-similarity measure of land class in spectral domain, a unique property to represent hyperspectral self-similarity of SRC in hyperspectral imagery.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Geometry and Topology,Modelling and Simulation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3