FRACTIONAL ORDER THERMOELASTICITY FOR PIEZOELECTRIC MATERIALS

Author:

YU YA JUN12ORCID,DENG ZI CHEN12

Affiliation:

1. Department of Engineering Mechanics, Northwestern Polytechnical University, Xi’an 710129, P. R. China

2. MIIT Key Laboratory of Dynamics and Control of Complex Systems, Northwestern Polytechnical University, Xi’an 710129, P. R. China

Abstract

This work is aimed at establishing a unified fractional thermoelastic model for piezoelectric structures, and shedding light on the influence of different definitions on the transient responses. Theoretically, based upon Cattaneo-type equation, a unified form of fractional heat conduction law is proposed by adopting Caputo Fabrizio fractional derivative, Atangana Baleanu fractional derivative and Tempered Caputo fractional derivative. Then, thermoelastic model of fractional order is formulated for piezoelastic materials by combining the unified heat conduction law and the governing equations of elastic and electric fields. Numerically, the present theoretical model is applied to study the transient responses of piezoelectric medium that is subjected to a thermal shock. The governing equations are analytically derived and numerically solved with the aids of Laplace transform method. The obtained results are graphically illustrated, and the influences of different definitions of fractional derivative and different fractional order are revealed. This work may be helpful for understanding the multi-coupling effect of elastic, thermal and electric fields, and for inspiring further developments of fractional calculus.

Funder

National Natural Science Foundation of China

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Geometry and Topology,Modelling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3