Affiliation:
1. Department of Engineering Mechanics, Northwestern Polytechnical University, Xi’an 710129, P. R. China
2. MIIT Key Laboratory of Dynamics and Control of Complex Systems, Northwestern Polytechnical University, Xi’an 710129, P. R. China
Abstract
This work is aimed at establishing a unified fractional thermoelastic model for piezoelectric structures, and shedding light on the influence of different definitions on the transient responses. Theoretically, based upon Cattaneo-type equation, a unified form of fractional heat conduction law is proposed by adopting Caputo Fabrizio fractional derivative, Atangana Baleanu fractional derivative and Tempered Caputo fractional derivative. Then, thermoelastic model of fractional order is formulated for piezoelastic materials by combining the unified heat conduction law and the governing equations of elastic and electric fields. Numerically, the present theoretical model is applied to study the transient responses of piezoelectric medium that is subjected to a thermal shock. The governing equations are analytically derived and numerically solved with the aids of Laplace transform method. The obtained results are graphically illustrated, and the influences of different definitions of fractional derivative and different fractional order are revealed. This work may be helpful for understanding the multi-coupling effect of elastic, thermal and electric fields, and for inspiring further developments of fractional calculus.
Funder
National Natural Science Foundation of China
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Geometry and Topology,Modelling and Simulation
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献