Affiliation:
1. School of Petroleum Engineering, China University of Petroleum (East China), Qingdao 266580, China
2. Cullen College of Engineering, University of Houston, TX 77204, USA
Abstract
Fluid transport in shales is complex due to the various storage spaces and multiple transport mechanisms, especially for multiphase transport during flowback and early stage of production. This study proposes a gas-water relative permeability fractal model during a gas displacing water process in shale gas reservoirs, with incorporations of (1) real gas transport controlled by Knudsen Number (Kn) and second-order slip boundary, (2) slip length for water phase transport, (3) a mobile water film with varying thickness due to rock–fluid interaction and (4) stress-dependence. Specially, the varying thickness of water film is determined according to the extended Derjaguin–Landau–Verwey–Overbeek (DLVO) theory through van der Waals, electrostatic and structural force during a drainage process. Moreover, the organic matter (OM) and inorganic matter (IOM) pore structures are considered with individual pore/tortuosity fractal dimensions. The proposed model is verified by comparing with an analytical model and experimental data. Results show that the decreasing pore pressure during depressurization brings a decline in gas relative permeability, while the decreasing pore pressure has little impact on water relative permeability. The impact of pore and tortuosity fractal dimensions of OM can be ignored compared with that of IOM. Furthermore, neglecting the mobile water film with varying thickness during a gas drainage process leads to an overestimation of gas relative permeability, especially at smaller pore sizes. This work presents a comprehensive model to determine gas-water relative permeability in shales by considering fluids/reservoir properties and rock–fluid interaction in full, which reveals multiphase transport mechanisms in the unconventional reservoirs.
Funder
National Natural Science Foundation of China
Science and Technology Support Plan for Youth Innovation of University in Shandong Province
Fundamental Research Funds for the Central Universities
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Geometry and Topology,Modelling and Simulation
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献