FRACTIONAL MODEL OF BRINKMAN-TYPE NANOFLUID FLOW WITH FRACTIONAL ORDER FOURIER’S AND FICK’S LAWS

Author:

MURTAZA SAQIB1ORCID,KUMAM POOM12ORCID,AHMAD ZUBAIR3ORCID,SITTHITHAKERNGKIET KANOKWAN4ORCID,SUTTHIBUTPONG THANA5ORCID

Affiliation:

1. Department of Mathematics, Faculty of Science, King Mongkut’s University of Technology Thonburi (KMUTT), 126 Pracha Uthit Rd, Bang Mod, Thung Khru, Bangkok 10140, Thailand

2. Center of Excellence in Theoretical and Computational Science (TaCS-CoE), Faculty of Science, King Mongkut’s University of Technology Thonburi (KMUTT), 126 Pracha Uthit Rd., Bang Mod, Thung Khru, Bangkok 10140, Thailand

3. Department of Mathematics and Physics, University of Campania “Luigi Vanvitelli”, Caserta 81100, Italy

4. Intelligent and Nonlinear Dynamic Innovations Research Center, Department of Mathematics, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok (KMUTNB), 1518, Wongsawang, Bangsue, Bangkok 10800, Thailand

5. Theoretical and Computational Physics Group, Department of Physics, King Mongkut’s University of Technology Thonburi (KMUTT), 126 Pracha Uthit Rd., Bang Mod, Thung Khru, Bangkok 10140, Thailand

Abstract

Nanofluids are used to achieve maximum thermal performance with the smallest concentration of nanoparticles and stable suspension in conventional fluids. The effectiveness of nanofluids in convection processes is significantly influenced by their increased thermophysical characteristics. Based on the characteristics of nanofluids, this study examines generalized Brinkman-type nanofluid flow in a vertical channel. Three different types of ultrafine solid nanoparticles such as GO, [Formula: see text], and [Formula: see text] are dispersed uniformly in regular water to form nanofluid.  Partial differential equations (PDEs) are used to model the phenomena. Fick’s and Fourier’s laws of fractional order were then used to formulate the generalized mathematical model. The exact solution of the generalized mathematical model has been obtained by the joint use of Fourier sine and the Laplace transform (LT) techniques. The obtained solution is represented in Mittag-Leffler function. To analyze the behavior of fluid flow, heat and mass distribution in fluid, the obtained solution was computed numerically and then plotted in response to different physical parameters. It is worth noting from the analysis that the heat transfer efficiency of regular water has been improved by 25% by using GO nanoparticles, 23.98% by using [Formula: see text], and 20.88% by using [Formula: see text].

Funder

National Science, Research and Innovation Fund (NSRF), and King Mongkut's University of Technology North Bangkok

Publisher

World Scientific Pub Co Pte Ltd

Subject

Applied Mathematics,Geometry and Topology,Modeling and Simulation

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3