WHY FARIMA MODELS ARE BRITTLE

Author:

VEITCH D.1,GORST-RASMUSSEN A.1,GEFFERTH A.1

Affiliation:

1. Department of Electrical and Electronic Engineering, The University of Melbourne, Victoria 3010, Australia

Abstract

The FARIMA models, which have long-range-dependence (LRD), are widely used in many areas. Through the derivation of a precise characterization of the spectrum and variance time function, we show that this family is very atypical among LRD processes, being extremely close to the fractional Gaussian noise in a precise sense which results in ultra-fast convergence to fGn under rescaling. Furthermore, we show that this closeness property is not robust to additive noise. We argue that the use of FARIMA, and more generally fractionally differenced time series, should be reassessed in some contexts, in particular when convergence rate under rescaling is important and noise is expected.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Geometry and Topology,Modelling and Simulation

Reference18 articles.

1. M. Taqqu, Theory and Applications of Long-Range Dependence, eds. P. Doukhan, G. Oppenheim and M. S. Taqqu (Birkhäuser, Boston, 2002) pp. 6–38.

2. Fractional differencing

3. AN INTRODUCTION TO LONG-MEMORY TIME SERIES MODELS AND FRACTIONAL DIFFERENCING

4. An extension of a logarithmic form of Cramér’s ruin theorem to some FARIMA and related processes

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3