AUDIO MAGNETOTELLURIC SIGNAL-NOISE IDENTIFICATION AND SEPARATION BASED ON MULTIFRACTAL SPECTRUM AND MATCHING PURSUIT

Author:

LI JIN1,ZHANG XIAN1,TANG JINGTIAN2,CAI JIN1,LIU XIAOQIONG1

Affiliation:

1. College of Information Science and Engineering, Hunan Normal University, Changsha 410081, P. R. China

2. School of Geosciences and Info-Physics, Key Laboratory of Metallogenic Prediction of Non-Ferrous Metals and Geological Environment Monitor, Ministry of Education, Central South University, Changsha 410083, P. R. China

Abstract

To avoid the blindness of the overall de-noising method and retain useful low frequency signals that are not over processed, we proposed a novel audio magnetotelluric (AMT) signal-noise identification and separation method based on multifractal spectrum and matching pursuit. We extracted two sets of multifractal spectrum characteristic from AMT time-series data to analyze the singularity. We used a support vector machine approach to learn the multifractal spectrum characteristics in a sample’s library and generate a model of support vector machine to distinguish between sections with and without interference in the measured AMT data. The matching pursuit algorithm was used to separate only those sections identified as having interference. Experimental results showed that the proposed method can effectively identify interference in the EMTF mathematical model and measured AMT data. Sections without interference were accurately preserved and reconstructed AMT signals were close to the natural electromagnetic field. The resulting apparent resistivity-phase curve is more continuous and smooth, and effectively improves the quality of AMT data. Moreover, the proposed method provides more reliable AMT data for subsequent electromagnetic inversion.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Geometry and Topology,Modeling and Simulation

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3