FRACTAL ANALYSIS OF STRESS-DEPENDENT DIFFUSIVITY OF POROUS CEMENTITIOUS MATERIALS

Author:

ZENG QIANG1,JIKE NIDU1,LIU JIAHAN1,WANG ZHENDI2,WANG JIYANG1ORCID

Affiliation:

1. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, P. R. China

2. State Key Laboratory of Green Building Materials, China Building Materials Academy, Beijing 100024, P. R. China

Abstract

The understanding of the diffusion process and mechanisms of harmful species (e.g. chlorides) in porous cementitious materials is important to control and improve the material durability under harsh environments. In this paper, fractal analysis on the pore structure of porous cementitious materials was conducted and involved in a diffusion model. Macro material geometric parameters were considered in the model to avoid the difficulties in the measurements of microscopic pore parameters. The deformations of porous cementitious materials under the uniaxial elastic loads were considered to correct the diffusion model. The stress-affected diffusivity was displayed in an elegant expression involving some macro material parameters (e.g. total porosity, elastic modulus of solid skeleton, Poisson ratio). Results show that the effective diffusivity is greatly influenced by the porosity and stress ratio. The uniaxial elastic loads decrease the pore areas but increase the lengths of the pore channels for mass diffusion, which eventually causes the decrease of the effective diffusivity. The plots of the relative diffusivity against the stress ratio follow linear forms. The developed fractal diffusion model may help better understand the diffusion process in complex porous cementitious materials under elastic loads. Going beyond this, the fractal diffusion model may provide a new tool to predict the diffusivity of porous building materials under complex mechanical and environmental loads.

Funder

National Natural Science Foundation of China

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Geometry and Topology,Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3