THE EFFECTIVENESS OF A SIERPINSKI CARPET-INSPIRED TRANSDUCER

Author:

CANNING S.1,WALKER A. J.2,ROACH P. A.1

Affiliation:

1. School of Computing and Mathematics, University of South Wales, Pontypridd, CF37 1DL, UK

2. School of Science and Sport, University of the West of Scotland, Paisley, PA1 2BE, UK

Abstract

Piezoelectric ultrasonic transducers have the ability to act both as a receiver and a transmitter of ultrasound. Standard designs have a regular structure and therefore operate effectively over narrow bandwidths due to their single length scale. Naturally occurring transducers benefit from a wide range of length scales giving rise to increased bandwidths. It is therefore of interest to investigate structures which incorporate a range of length scales, such as fractals. This paper applies an adaptation of the Green function renormalization method to analyze the propagation of an ultrasonic wave in a series of pre-fractal structures. The structure being investigated here is the Sierpinski carpet. Novel expressions for the non-dimensionalized electrical impedance and the transmission and reception sensitivities as a function of the operating frequency are presented. Comparisons of metrics between three new designs alongside the standard design (Euclidean structure) and the previously investigated Sierpinski gasket device are performed. The results indicate a significant improvement in the reception sensitivity of the device, and improved bandwidth in both the receiving and transmitting responses.

Funder

Centenary Doctoral Scholarship from the University of South Wales

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Geometry and Topology,Modeling and Simulation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3