FRACTAL ORACLE NUMBERS

Author:

RATSABY JOEL1ORCID

Affiliation:

1. Ariel University, Ariel, Israel

Abstract

Consider orbits [Formula: see text] of the fractal iterator [Formula: see text], [Formula: see text], that start at initial points [Formula: see text], where [Formula: see text] is the set of all rational complex numbers (their real and imaginary parts are rational) and [Formula: see text] consists of all such [Formula: see text] whose complexity does not exceed some complexity parameter value [Formula: see text] (the complexity of [Formula: see text] is defined as the number of bits that suffice to describe the real and imaginary parts of [Formula: see text] in lowest form). The set [Formula: see text] is a bounded-complexity approximation of the filled Julia set [Formula: see text]. We present a new perspective on fractals based on an analogy with Chaitin’s algorithmic information theory, where a rational complex number [Formula: see text] is the analog of a program [Formula: see text], an iterator [Formula: see text] is analogous to a universal Turing machine [Formula: see text] which executes program [Formula: see text], and an unbounded orbit [Formula: see text] is analogous to an execution of a program [Formula: see text] on [Formula: see text] that halts. We define a real number [Formula: see text] which resembles Chaitin’s [Formula: see text] number, where, instead of being based on all programs [Formula: see text] whose execution on [Formula: see text] halts, it is based on all rational complex numbers [Formula: see text] whose orbits under [Formula: see text] are unbounded. Hence, similar to Chaitin’s [Formula: see text] number, [Formula: see text] acts as a theoretical limit or a “fractal oracle number” that provides an arbitrarily accurate complexity-based approximation of the filled Julia set [Formula: see text]. We present a procedure that, when given [Formula: see text] and [Formula: see text], it uses [Formula: see text] to generate [Formula: see text]. Several numerical examples of sets that estimate [Formula: see text] are presented.

Publisher

World Scientific Pub Co Pte Ltd

Reference9 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3