A FRACTAL MODEL FOR GAS DIFFUSION IN DRY AND WET FIBROUS MEDIA WITH TORTUOUS CONVERGING–DIVERGING CAPILLARY BUNDLE

Author:

GAO JUN12,XIAO BOQI1ORCID,TU BILIANG1,CHEN FENGYE1,LIU YONGHUI1

Affiliation:

1. School of Mechanical and Electrical Engineering, Wuhan Institute of Technology, Wuhan 430205, P. R. China

2. School of Mechanical and Electrical Engineering, Wuhan Business University, Wuhan 430056, P. R. China

Abstract

In this paper, a fractal model is proposed for gas diffusion in dry and wet fibrous media with tortuous converging–diverging capillary bundle on the basis of the fractal theory. The proposed theoretical model for the normalized gas diffusivity (NGD) can be expressed as an explicit functional relation of porosity, [Formula: see text], fluid saturation, [Formula: see text], fractal dimensions, [Formula: see text] and [Formula: see text], the minimum average radius, [Formula: see text], the maximum average radius, [Formula: see text], the straight capillary length of a unit cell [Formula: see text] as well as fluctuation amplitude [Formula: see text]. The predictions of the proposed model have been compared with the existing experimental data and the available model predictions, and a good agreement can be observed. The effect of various parameters on the NGD is studied alone. It is observed that the NGD decreases with an increase in the fluctuation amplitude. Also, it is seen that the NGD decreases with an increase in the tortuosity fractal dimension. Moreover, it is found that the NGD in wet fibrous media decreases with an increase in the fluid saturation. The present model has no empirical constant and each parameter contains clear physical meaning. These may better reveal the physical mechanisms of gas diffusion in fibrous media.

Funder

Knowledge Innovation Program of Wuhan — Shuguang Project

Knowledge Innovation Program of Wuhan — Basic Research

Publisher

World Scientific Pub Co Pte Ltd

Subject

Applied Mathematics,Geometry and Topology,Modeling and Simulation

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3