Affiliation:
1. School of Aeronautics and Astronautics, Sun Yat-Sen University, Shenzhen, 518107, P. R. China
Abstract
In this paper, a convection and heat transfer problem of power-law fluid in a three-dimensional porous media with complex evaporating surface is studied. The Buoyancy-Marangoni convection for non-Newtonian power-law fluids in porous media is solved using a compact high-order finite volume method. For this model, the left wall is kept at high temperature and high concentration, the right wall is affected by lower temperature and lower concentration, the upper wall is a complex evaporating surface. The Weierstrass–Mandelbrot function is used to approximate the shape of the evaporation interface, the analytical solution of its fractal dimension can be obtained by the pore area fractal dimension, and the volume percentage of liquid. The fluid in the porous cavity is a power-law fluid containing copper oxide nanoparticles. The solid material of the porous medium is aluminum foam. Numerical simulations can be used to determine Marangoni number, Rayleigh number and the pore area fractal dimension on the flow, heat transfer, and mass transfer rate.
Funder
Joint Funds of the Ministry of Education for Equipment Pre-research
Chinese NSFC
Joint Funds of the National Natural Science Foundation of China
Publisher
World Scientific Pub Co Pte Ltd
Subject
Applied Mathematics,Geometry and Topology,Modeling and Simulation
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献