Affiliation:
1. Institute of Science, Nanjing University of Science and Technology, Xiaolingwei 200, Xuanwu District, Nanjing 210094, P. R. China
Abstract
In this paper, fractal dimensions of fractional calculus of continuous functions defined on [Formula: see text] have been explored. Continuous functions with Box dimension one have been divided into five categories. They are continuous functions with bounded variation, continuous functions with at most finite unbounded variation points, one-dimensional continuous functions with infinite but countable unbounded variation points, one-dimensional continuous functions with uncountable but zero measure unbounded variation points and one-dimensional continuous functions with uncountable and non-zero measure unbounded variation points. Box dimension of Riemann–Liouville fractional integral of any one-dimensional continuous functions has been proved to be with Box dimension one. Continuous functions on [Formula: see text] are divided as local fractal functions and fractal functions. According to local structure and fractal dimensions, fractal functions are composed of regular fractal functions, irregular fractal functions and singular fractal functions. Based on previous work, upper Box dimension of any continuous functions has been proved to be no less than upper Box dimension of their Riemann–Liouville fractional integral. Fractal dimensions of Riemann–Liouville fractional derivative of certain continuous functions have been investigated elementary.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Jiangsu Province
The Fundamental Research Funds for the Central Universities
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Geometry and Topology,Modelling and Simulation
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献