THRESHOLD DYNAMICS AND BIFURCATION ANALYSIS OF THE EPIDEMIC MODEL OF MERS-CoV

Author:

ALQAHTANI HESSAH1ORCID,BADSHAH QAISAR2ORCID,RAHMAN GHAUS UR2ORCID,BALEANU DUMITRU345ORCID,SAKHI SHAZIA6ORCID

Affiliation:

1. Department of Mathematics, Faculty of Science and Arts, King Abdulaziz University, Rabigh, Saudi Arabia

2. Department of Mathematics & Statistics, University of Swat, KPK, Pakistan

3. Department of Computer Science and Mathematics, Lebanese American University, Beirut, Lebanon

4. Institute of Space Sciences, Magurele 077125 Bucharest, Romania

5. Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan

6. Centre for Plant Sciences & Biodiversity, University of Swat, Pakistan

Abstract

A viral respiratory disease, MERS spread by a novel coronavirus, was first detected in Saudi Arabia in 2012. It is a big threat for the Arab community and is a horrible prediction that the disease may rapidly propagate to other parts of the world. In this research endeavor, a mathematical model of MERS-Corona virus (MERS-CoV) is presented. Initially, we formulate a model, governing the dynamics of MERS-CoV disease and then determine basic reproductive number [Formula: see text]. Local stability analysis results are formulated at the equilibrium points. It has been found that one of the eigenvalues is zero, therefore bifurcation exists. Afterward, in formulating proper Lyapunov functional [J. P. LaSalle, The Stability of Dynamical Systems, Vol. 25 (Society for Industrial and Applied Mathematics, 1976)], we successfully established results about global stability of the proposed model at both equilibrium points. Sensitivity analysis of the parameters as well as of threshold value for the underlying model has been exhibited. The numerical illustration of theoretical findings is explained via examples.

Funder

The Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah,

Publisher

World Scientific Pub Co Pte Ltd

Subject

Applied Mathematics,Geometry and Topology,Modeling and Simulation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3