AN ANALYTICAL MODEL FOR PORE AND TORTUOSITY FRACTAL DIMENSIONS OF POROUS MEDIA

Author:

XU PENG12ORCID,CHEN ZHENYU1,QIU SHUXIA13,YANG MO3,LIU YANWEI2

Affiliation:

1. College of Science, China Jiliang University, Hangzhou 310018, P. R. China

2. State Key Laboratory Cultivation Base for Gas Geology and Gas Control, Henan Polytechnic University, Jiaozuo 454000, P. R. China

3. School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China

Abstract

Accurate characterization of pore-scale structures of porous media is necessary for studying their transport mechanisms and properties. An analytical model for pore and capillary structures of porous media is developed based on fractal theory in this study. The pore and tortuosity fractal dimensions are introduced to characterize the pore size distribution and tortuous flow paths. A power law scaling between fractal probability function and pore diameter is proposed, which can be applied to determine the pore fractal dimension. The explicit expression for tortuosity fractal dimension is derived based on exactly self-similar fractal set and fractal capillary bundle model. The present fractal model has been validated by comparison with that of experiments and numerical simulations as well as theoretical models. The results show that the tortuosity fractal dimension decreases as porosity and pore fractal dimension increase, it increases with the increment of tortuosity. Both the particle shape and pore size range take important effect on the tortuosity fractal dimension under certain porosity. The proposed pore-scale model can present a conceptual tool to study the transport mechanisms of porous media and may provide useful guideline for oil and gas exploitation, hydraulic resource development, geotechnical engineering and chemical engineering.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Zhejiang Province

Fundamental Research Funds for the Provincial Universities of Zhejiang

Publisher

World Scientific Pub Co Pte Ltd

Subject

Applied Mathematics,Geometry and Topology,Modelling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3