OPTIMIZATION OF THE FRACTAL-LIKE ARCHITECTURE OF POROUS FIBROUS MATERIALS RELATED TO PERMEABILITY, DIFFUSIVITY AND THERMAL CONDUCTIVITY

Author:

XIAO BOQI12,WANG WEI1,FAN JINTU3,CHEN HANXIN1,HU XIAOLONG1,ZHAO DESHUN1,ZHANG XIAN1,REN WEN2

Affiliation:

1. School of Mechanical and Electrical Engineering, Wuhan Institute of Technology, Wuhan 430205, P. R. China

2. School of Mechanical and Electrical Engineering, Sanming University, Sanming 365004, P. R. China

3. Department of Fiber Science & Apparel Design, College of Human Ecology, Cornell University, Ithaca, NY 14853-4401, USA

Abstract

In this study, the optimization of the fractal-like architecture of porous fibrous materials related to permeability, diffusivity, and thermal conductivity was analyzed by applying the established theoretical models. It was observed that the ratio of dimensionless permeability over dimensionless effective diffusivity decreased with the decrease of porosity and tortuosity fractal dimension, respectively, which implied that lower porosity and tortuosity fractal dimension were beneficial to wind/water resistant fabric, as it reduced the ratio of dimensionless permeability over dimensionless effective diffusivity. Besides, it was found that the ratio of the dimensionless total effective thermal conductivity over dimensionless effective diffusivity increased with tortuosity fractal dimension, which implied lower tortuosity fractal dimension was beneficial to clothing insulation, as it reduced the ratio of dimensionless total effective thermal conductivity over dimensionless effective diffusivity. The optimization results indicated that fabrics with more aligned fibers were preferred for protective clothing, as the low tortuosity fractal dimension implied fibers in the fibrous materials should be more aligned.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Geometry and Topology,Modelling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3