HARMONIC GRADIENTS ON HIGHER-DIMENSIONAL SIERPIŃSKI GASKETS

Author:

BROWN LUKE1,FERRER GIOVANNI2,MOGRABY GAMAL3,ROGERS LUKE G.3ORCID,SANGAM KARUNA4

Affiliation:

1. Department of Mathematics, Drexel University, Philadelphia, PA 19104, United States

2. Department of Mathematics, University of Puerto Rico (Mayagüez), Mayagüez 00682, Puerto Rico, United States

3. Department of Mathematics, University of Connecticut, Storrs, CT 06269, United States

4. Department of Mathematics, Rutgers University, Piscataway, NJ, United States

Abstract

We consider criteria for the differentiability of functions with continuous Laplacian on the Sierpiński Gasket and its higher-dimensional variants [Formula: see text], [Formula: see text], proving results that generalize those of Teplyaev [Gradients on fractals, J. Funct. Anal. 174(1) (2000) 128–154]. When [Formula: see text] is equipped with the standard Dirichlet form and measure [Formula: see text] we show there is a full [Formula: see text]-measure set on which continuity of the Laplacian implies existence of the gradient [Formula: see text], and that this set is not all of [Formula: see text]. We also show there is a class of non-uniform measures on the usual Sierpiński Gasket with the property that continuity of the Laplacian implies the gradient exists and is continuous everywhere in sharp contrast to the case with the standard measure.

Funder

National Science Foundation

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Geometry and Topology,Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3