ON AXOPLASMIC PRESSURE WAVES AND THEIR POSSIBLE ROLE IN NERVE IMPULSE PROPAGATION

Author:

RVACHEV MARAT M.1

Affiliation:

1. Physics Department, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139, USA

Abstract

It is suggested that the propagation of the action potential is accompanied by an axoplasmic pressure pulse propagating in the axoplasm along the axon length. The pressure pulse stretch-modulates voltage-gated Na+(Nav) channels embedded in the axon membrane, causing their accelerated activation and inactivation and increasing peak channel conductance. As a result, the action potential propagates due to mechano-electrical activation of Nav channels by straggling ionic currents and the axoplasmic pressure pulse. The velocity of such propagation is higher than in the classical purely electrical Nav activation mechanism, and it may be close to the velocity of propagation of pressure pulses in the axoplasm. Extracellular Ca2+ions influxing during the voltage spike, or Ca2+ions released from intracellular stores, may trigger a mechanism that generates and augments the pressure pulse, thus opposing its viscous decay. The model can potentially explain a number of phenomena that are not contained within the purely electrical Hodgkin–Huxley-type framework: the Meyer–Overton rule for the effectiveness of anesthetics, as well as various mechanical, optical and thermodynamic phenomena accompanying the action potential. It is shown that the velocity of propagation of axoplasmic pressure pulses is close to the measured velocity of the nerve impulse, both in absolute magnitude and in dependence on axon diameter, degree of myelination and temperature.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Molecular Biology,Structural Biology,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3