Oscillatory Dynamics in Complex Recurrent Neural Networks

Author:

Sengupta Rakesh1ORCID,Raja Shekar P. V.1

Affiliation:

1. Center for Creative Cognition, SR University, Warangal - 506 371, Telangana, India

Abstract

Spontaneous oscillations measured by local field potentials (LFPs), electroencephalograms and magnetoencephalograms exhibit a variety of oscillations spanning the frequency band of 1–100[Formula: see text]Hz in animals and humans. Both instantaneous power and phase of these ongoing oscillations have commonly been observed to correlate with pre-stimulus processing in animals and humans. However, despite numerous attempts it is not fully clear whether the same mechanisms can give rise to a range of oscillations as observed in vivo during resting-state spontaneous oscillatory activity of the brain. In this paper, we show how oscillatory activity can arise out of general recurrent on-center off-surround neural network. This work shows that (a) a complex-valued input to a class of biologically inspired recurrent neural networks can be shown to be mathematically equivalent to a combination of real-valued recurrent networks with real-valued feed-forward network, and (b) such a network can give rise to oscillatory signatures. We also validate the conjecture with results of simulation of complex-valued additive recurrent neural network.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Molecular Biology,Structural Biology,Biophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3