MACROMOLECULAR CROWDING IN BIOLOGICAL SYSTEMS: DYNAMIC LIGHT SCATTERING (DLS) TO QUANTIFY THE EXCLUDED VOLUME EFFECT (EVE)

Author:

HARVE KARTHIK S.1,RAGHUNATH MICHAEL1,LAREU RICKY R.23,RAJAGOPALAN RAJ4

Affiliation:

1. Tissue Modulation Laboratory, Division of Bioengineering, National University of Singapore, Singapore

2. Tissue Modulation Laboratory, NUS Tissue Engineering Program, National University of Singapore, Singapore

3. Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore

4. Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore

Abstract

Macromolecules crowd defined spaces, thereby excluding other like-sized molecules from the volume they occupy. These excluded-volume effect(s) (EVE) are well characterized for intracellular and partially for extracellular compartments such as blood plasma. We showed that EVE in fibroblast culture leads to faster enzymatic procollagen conversion and matrix deposition. Apparently, EVE can be applied to emulate in vivo conditions in an in vitro setting. Thus, we attempted to quantitatively capture the crowding potential of various macromolecules using dynamic light scattering under physiological conditions. We found that charged macromolecules like dextran sulfate (negative, 500 kDa) have a hydrodynamic radii of 46.4 ± 0.3 nm i.e. ~4 fold larger than that of neutral macromolecules like Ficoll (neutral, 400 kDa) and thus show greater EVE potential. At biologically effective concentrations viscosity was not increased. Unexpectedly, we observed a dramatic drop of hydrodynamic radii of all macromolecules tested above a threshold concentration. This suggested a hyper-crowding state in which the crowders compacted themselves mutually. We will use this hyper-crowding threshold to determine retrogradely rules that allow to predict the conditions for optimum crowding effects (such as the half-hyper-crowding concentration) in biological systems. We propose Dynamic Light Scattering (DLS) as a potential tool to estimate EVE in biotechnical applications.

Publisher

World Scientific Pub Co Pte Lt

Subject

Molecular Biology,Structural Biology,Biophysics

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3