ON MERGING CLASSIFICATION RULES

Author:

BOUTSINAS B.1,ATHANASIADIS S.2

Affiliation:

1. University of Patras, Department of Business Administration, University of Patras Artificial Intelligence Research Center [UPAIRC], GR-26500, RIO, Greece

2. University of Patras Artificial Intelligence Research Center [UPAIRC], GR-26500, RIO, Greece

Abstract

One of the main challenges of today's data mining systems is their ability to manage a huge volume of data generated possibly by different sources. On the other hand, inductive learning algorithms have been extensively researched in machine learning using small amounts of judiciously chosen laboratory examples. There is an increasing concern in classifiers handling data that are substantially larger than available main memory on a single processor. One approach to the problem is to combine the results of different classifiers supplied with different subsets of the data, in parallel. In this paper, we present an efficient algorithm for combining partial classification rules. Moreover, the proposed algorithm can be used to match classification rules in a distributed environment, where different subsets of data may have different domains. The latter is achieved by using given concept hierarchies for the identification of matching classification rules. We also present empirical tests that demonstrate that the proposed algorithm has a significant speedup with respect to the analog non-distributed classification algorithm, at a cost of a lower classification accuracy.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science (miscellaneous),Computer Science (miscellaneous)

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Binary classification rule generation from decomposed data;International Journal of Intelligent Systems;2019-09-23

2. An Intelligent Transformation Knowledge Mining Method Based on Extenics;J INTERNET TECHNOL;2013

3. IMPROVING PURCHASING BEHAVIOR PREDICTIONS BY DATA AUGMENTATION WITH SITUATIONAL VARIABLES;International Journal of Information Technology & Decision Making;2010-11

4. Knowledge extraction from multiple criteria linear programming classification approach;Procedia Computer Science;2010-05

5. DISTRIBUTION OF MULTI-WORDS IN CHINESE AND ENGLISH DOCUMENTS;International Journal of Information Technology & Decision Making;2009-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3