COMPARISON OF INTERESTINGNESS MEASURES FOR WEB USAGE MINING: AN EMPIRICAL STUDY

Author:

HUANG XIANGJI1

Affiliation:

1. School of Information Technology, 3048 TEL Building, York University, 4700 Keele Street, Toronto, Canada M3J 1P3, Canada

Abstract

A common problem in mining association rules or sequential patterns is that a large number of rules or patterns can be generated from a database, making it impossible for a human analyst to digest the results. Solutions to the problem include, among others, using interestingness measures to identify interesting rules or patterns and pruning rules that are considered redundant. Various interestingness measures have been proposed, but little work has been reported on the effectiveness of the measures on real-world applications. We present an application of Web usage mining to a large collection of Livelink log data. Livelink is a web-based product of Open Text Corporation, which provides automatic management and retrieval of different types of information objects over an intranet, an extranet or the Internet. We report our experience in preprocessing raw log data, mining association rules and sequential patterns from the log data, and identifying interesting rules and patterns by use of interestingness measures and some pruning methods. In particular, we evaluate a number of interestingness measures in terms of their effectiveness in finding interesting association rules and sequential patterns. Our results show that some measures are much more effective than others.

Publisher

World Scientific Pub Co Pte Lt

Subject

Computer Science (miscellaneous),Computer Science (miscellaneous)

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. DEVELOPMENT OF FUZZY INFERENCE SYSTEM FOR COVID-19 DATA ANALYSIS;Journal of Pharmaceutical Negative Results;2022-10-09

2. Fuzzy based classification and COVID-19 Patient’s Data analysis;Journal of Pharmaceutical Negative Results;2022-01-01

3. Coefficients of Structural Association;International Journal of Information Technology & Decision Making;2017-03

4. Semantically Enriched Variable Length Markov Chain Model for Analysis of User Web Navigation Sessions;International Journal of Information Technology & Decision Making;2014-07

5. Closeness Preference – A new interestingness measure for sequential rules mining;Knowledge-Based Systems;2013-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3